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SUMMARY

A computer-aiding concept for low-altitude helicopter flight has been developed and evaluated in

a real-time piloted simulation. The concept included an optimal control trajectory-generation algo-

rithm based on dynamic programming, and a head-up display (HUD) presentation of a pathway-in-

the-sky, a phantom aircraft, and flight-path vector/predictor symbol. The trajectory-generation

algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft perfor-

mance capabilities, and advanced navigation information to determine a trajectory between mission

waypoints that minimizes threat exposure by seeking valleys. The pilot evaluation was conducted at

NASA Ames Research Center's Sim Lab facility in both the fixed-base Interchangeable Cab (ICAB)

simulator and the moving-base Vertical Motion Simulator (VMS) by pilots representing NASA, the

U.S. Army, and the U.S. Air Force. The pilots manually tracked the trajectory generated by the

algorithm utilizing the HUD symbology. They were able to satisfactorily perform the tracking tasks

while maintaining a high degree of awareness of the outside world.

INTRODUCTION

Helicopters that operate in threat areas have a need for low-level, maneuvering-penetration

capability under nighttime and adverse weather conditions. Currently, this low-level penetration is

accomplished through terrain-following (TF) systems by using a combination of technologies such

as multimode radar (MMR) systems, forward-looking infrared (FLIR), and night-vision goggles

(NVG). TF systems were initially developed for fixed-winged tactical and strategic aircraft such as

the FB-111 and B-lB. The TF systems have also been developed for combat search and rescue air-

craft such as the CH-53 PAVE LOW III and the HH-60 helicopters, and are currently part of the

Army's Special Operations Forces (SOF) helicopters (ref. 1). The TF systems generate vertical

commands that are either displayed on a flight director for manual flight or sent to the flight-control

system for automatic flight. These systems do not generate commands for lateral maneuvering, are

limited to line-of-sight maneuvering, and do not provide information to the pilot that would allow

him to make strategic decisions that could give better terrain masking.

Recently the Air Force sponsored research to extend TF capability for high-performance aircraft

to include lateral maneuvering by taking advantage of on-board digital terrain data, references 2-5.

The work concentrated on the development of four potential algorithms, each of which is based on

minimizing a quadratic cost functional, defined to reflect the degree of vulnerability. This extended

capability is commonly referred to as terrain-following/terrain-avoidance (TF/TA) in the literature.

Within the last few years there has been considerable work within NASA and elsewhere

(refs. 6-8) in applying these algorithms to rotorcraft. The NASA research has concentrated on incor-

porating these algorithms into an operationally acceptable system, referred to as the Computer

Aiding for Low-Altitude Helicopter Flight Guidance System; several piloted simulations of this

system have been conducted. The first two were dedicated to the development of the system and

pilot interface issues. They are described thoroughly in reference 9.



Thepurposeof this paper is to present the results of an operational evaluation of the guidance

and display concepts developed in reference 9 using the Vertical Motion Simulator (VMS) at Ames.

The primary objectives of this simulation were to 1) determine the pilot guidance-tracking perfor-

mance under various combinations of environmental conditions, terrain, and aircraft speeds, and

2) examine the ability of the pilot to integrate the guidance information with the outside world when

visibility allows for pilot-directed obstacle avoidance and improved concealment. The paper is

organized so as to familiarize the reader with computer-aiding for low-altitude helicopter flight by

describing the overall system, which includes 1) the trajectory-generation algorithm, 2) the trajectory

coupler, and 3) the displayed information. The simulation, test procedures, and performance results

are then covered.

SYSTEM DESCRIPTION

Shown in figure 1 is a functional block diagram of the computer-aiding for low-altitude

helicopter flight system. There are three fundamental components; 1) the trajectory-generation

algorithm, which is referred to as Dynapath; 2) the trajectory coupler;, and 3) the displayed infor-

mation. This system has to be integrated with the pilot, the helicopter, and the aircraft sensors. The

trajectory-generation algorithm, the trajectory coupler, and the displayed information are discussed

below.

-Air_alt Dynapath I commanded Trajectory coupler and command Pilot andPerformance algorithm _ displayed .information _ helioopter

DrEod,,t=v ! Nc, ,

Figure 1. System block diagram.

Trajectory Generation Algorithm

The trajectory-generation algorithm (Figure (1)), known as Dynapath, was originally developed

for the U.S. Air Force (ref. 10). The goal of the Air Force research was the development of a TF/TA

guidance algorithm for automatic tactical aircraft operations. Significant modifications have been

made to this guidance algorithm in adapting it for manual rotorcraft ope_tions, The rationale and

description of the modifications are presented in reference (9).

Dynapath is a valley-seeking, trajectory-generating algorithm based on a forward-chaining

dynamic-programming technique. In-depth descriptions of Dynapa_ are provided in references I0

and 11, so it Will be treated only briefly here. The algorithm uses two kinds of inputs. The first, char-

acterized as mission-dependent information, includes mission waypoints, for defining a global trajec-

tory to be flown, and Defense Mapping Agency (DMA) digital terrain-elevation data (DTED) of the
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areain which themissionis to beaccomplished.Thesecondkindof input consistsof pilot-comfort
andaircraft-dependentinformation:maximumbank-anglecommands,maximumclimb anddive
angles,maximumpull-up andpush-overloadfactors,set-clearancealtitude(desiredtrajectory
altitudeabovetheground),alongwith sensedaircraft-stateinformation.

Dynapathusesadecoupled procedure in which the lateral and vertical trajectory solutions are

determined independently to obtain an optimal trajectory. In this decoupled procedure, the lateral

ground track is first determined by assuming that the aircraft can fly perfectly at the vertical set-

clearance altitude. The vertical trajectory is then calculated using the aircraft normal load factor and

flight-path angle as maneuver constraints to maintain the aircraft at or slightly above the vertical-set

clearance as determined from the digital-terrain map and the lateral ground track.

The lateral path is calculated using a tree structure of possible two-dimensional trajectories by

using discretized variation in aircraft bank angle. Assuming constant speed and coordinated flight,

each discrete bank value produces a possible path which in combination forms a tree of possible

paths (fig. 2). In this implementation, the bank-angle control has five discrete values that are used for

the trajectory calculation: +100% maximum bank angle for large control, +33% maximum bank

angle for fine control, and 0 ° bank angle. The kinematical relationship for path curvature (p) based

on the above assumptions is given as

p: 0, +V-_-tan(¢max/3), +Stan(¢max) (1)

where

acceleration due to gravity

V aircraft velocity

l_max maximum bank-angle command

At any node point, only three bank-angle control values can be used: the control used in arriving

at the node point and the control values to either side. At each successive node of the tree, the air-

craft position and heading are stored along with the cumulative cost to each node. The transition

equations between each successive node point are

ix]ios,.n,sin, n,= sin(Vn) cos(v.)

n+l 0 0
i] I_sin(pWAt) 1 I x]x/_[1-_°s(pV_t)][+/Y /

LpvAt J LVJn

(2)



where

P

V

At

n

path curvature as defined in equation 1

aircraft ground speed

time (1 sec)

node heading

node index

_.____1- Patch length

_',,_ i • Node point

_ ,_l! • ,./t.- Firstleveltree

Z___> t'!F _/ generation

1_ ¢= -- _-_- Tree generation

__= __ j_ after pruning
|'- ='_ _, Mission waypoints

........ l. !11111

j/,
Figure 2. Dynapath tree generation.

A grid is superimposed upon the tree structure with boundaries defined by the maximum lateral

deviation and length of optimization. The purpose of the grid is to allow pruning of the tree to keep

the amount of possible tree branches at a reasonable level. The size and number of grid elements, or

"cells," were determined experimentally in reference 12. For a 30-sec patch the number of cell divi-

sions is 20 longitudinally along the patch and 20 laterally across the patch. Pruning the tree after

three to four levels of branching gave the best mix of branch generation and computational speed

based on results from nonreal-time computer simulations (ref. 12). Pruning is accomplished by com-

paring nodes within a cell that are heading in approximately the same direction and choosing the one
with the lowest cost to continue the branch propagation. Pruning is also executed on branches that

travel outside the grid or in a direction that causes significant path reversals; it is done at each node

generation. After the tree structure of possible paths has been propagated through the entire patch

length, the cumulative costs of all surviving branches are compared, and the path with the lowest

cost is selected as the optimal trajectory.



Thecostfunction J is theperformancemeasureusedto determinetheoptimal trajectory:

30

J= _ H7 + f(D)o)O 7 + ot(A_l/i) 2

i=1

(3)

where

Hi altitude above mean sea level at node i

Di lateral distance from reference path at node i

co TF/TA ratio

f(D) dead band on lateral deviation cost, i.e., if IDI < 5 then f(D) = 0 where 8 is a meaning-

ful distance, else f(D) = 1, and Di2 = (D i - 5) 2

A_/i the difference between the reference heading and the commanded heading at node i

ct heading weight

The rationale for this particular cost functional is given in reference 9, but a brief description is

warranted here. The fundamental parameters in this performance measure are the terms representing

altitude H and reference-path deviation D. The cost-functional, when driven by these two terms,

allows lateral maneuvering to seek lower altitude terrain by the cost reduction from H; excessive

deviation from the reference path is controlled by increasing cost due to D. The TF/TA ratio t.o

allows blending of these two terms to obtain a desired balance between vertical and horizontal

maneuvering. The f(D) and 0_(AIl/i) terms were added to reduce undesirable oscillations in the trajec-

tory about the nominal path within a patch that are caused by the bank-angle quantization. The f(D)

term eliminates the need for precise following of the nominal, or reference, path, and the ct(A_ti)

term provides a penalty for changing the heading from that given by the reference path. These two

terms were added based on results from piloted simulations to assist the trajectory-generation algo-

rithm emulate pilot control strategies for low-altitude maneuvering flight (ref. 9).

The trajectory-generation algorithm, as defined above, is designed to compute guidance for a

patch that represents the area in front of the aircraft's present location. The patch width is the maxi-

mum lateral deviation, and its length is the flight preview distance. Both are input parameters

selected by the user. The algorithm is computationally intensive; for example, when using represen-

tative values for patch length (=30 sec) and maximum lateral deviation (= 1 kin) the computational

cycle is about 4 to 5 sec for a modern flight computer. Several methods for updating and propagating

the algorithm were developed and evaluated during piloted simulations (ref. 9). The preferred

method is shown pictorially in figure 3. The algorithm is initialized to a predicted location of the

aircraft that is one computational cycle from its current position by using

Xpl = _a "tu + Xa (4)



where

Xp 1

&

X a

tu

initial predicted aircraft location

current aircraft velocity vector

computational cycle time or update time

current aircraft location

I Dynapath trajectory patch

i(t. ÷ hO

Figure 3. Update procedure.

After X:p_ is determined, the trajectory-generation algorithm calculates _hc first patch. Once the

first patch has been calculated, the algorithm queries the aircraft for its current location in order to

determine whether the aircraft has traveled into the first patch. Upon entering the patch, the

algorithm updates by using the following equations:

Xp2 = XDI(tu + th) (5)

Xpi+] = XDi(th)" i=2,3,4 .... (6)
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where

XDi Dynapath trajectory for the ith patch

th HUD pathway display length

The algorithm selects a point corresponding to the time required for the computational cycle time,

t u, plus the time corresponding to the length of the pilot's pathway-in-the-sky display, t h , in the

initial patch (eq. 5). Next, using equation 6, the path prediction is accomplished by using the desired

trajectory position at t h , thus requiring the initial segment of the trajectory to come from the two

previously calculated patches. In this way, the algorithm update is imperceptible to the pilot.

Trajectory Coupler

After the Dynapath algorithm produces its optimal trajectory it is passed to the trajectory coupler.

The trajectory is represented by 30 discrete instances of commanded aircraft-inertial state (position,

velocity, and acceleration) at 1-sec intervals. Also stored are commanded bank angles, headings, and

vertical flight-path angles. The trajectory coupler converts the quantized commanded trajectory into

a trajectory command that is designed to work synchronously with the pilot displays at a minimum

of 20 Hz, thus not imposing any time-delay that is perceptible to the pilot. This is accomplished by

interpolating within the trajectory to determine the instantaneous position of the trajectory points that

are to be presented on the pilot's head-up-display.

Displayed Information

The guidance and control information was displayed to the pilot on a Flight Dynamics head-up-

display (HUD) in the format shown in figure 4. The HUD is framed by four triangular symbols

directed at the center of the display. Since the HUD is body-fix mounted, these symbols represent the

pitch and roll axes reference. The primary situational information is presented to the pilot with a

flight-path vector/predictor symbol, represented by the circular aircraft icon. The logic that drives

this symbol will be discussed later. Digital airspeed and radar altitude are attached to the flight-path

vector/predictor symbol on the left and right, respectively. A longitudinal acceleration cue (>) and

airspeed flight director, in the form of a tape, are likewise attached. The horizon line along with pitch

reference lines are presented in a conventional way. The situational information presented on the

HUD in figure 4 indicates that the pilot is turning right with a slight descent as indicated by the

flight-path vector/predictor below the horizon.

The trajectory command information on the HUD is given by the pathway-in-the-sky and phan-

tom aircraft. The pathway symbols represent a three-dimensional perspective of the commanded

inertial position and heading of the discretized commanded states. The phantom aircraft is displayed

on the HUD as a delta-wing aircraft. The phantom aircraft represents the instantaneous position

along die commanded trajectory that is 3 sec ahead of the pilot's aircraft. The phantom aircraft atti-

tudes also are derived from the commanded trajectory, using the commanded vertical flight-path

angle, commanded bank, and commanded heading as pitch, roll, and yaw, respectively. As discussed
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Horizon line

attitude
Filght-i_th
vector

10 predictor

Figure 4. HUD format.

in reference 13, by positioning the flight-path vector symbol on the phantom aircraft, the pilot will

track the desired trajectory; this technique is referred to as pursuit tracking. In figure 4, the HUD is

commanding a climbing right turn.

The pathway is I00 ft wide at the bottom with vertical projections that are canted at a 45 ° angle;

the width at the top is 200 ft. The depth of the path is 50 ft below the intended trajectory; thus, when

flying a level straight-line commanded path, the pilots used the analogy of traveling in a full irriga-

tion canal for describing the pathway symbols. To avoid unnecessary clutter, the pathway was

restricted to only the next 7 sec of flight.

The pathway always represented the actual commanded trajectory on the HUD. Thus, if the

trajectory was not visible in the field of view (FOV) of the HUD (+10 ° vertically and 5:15 ° horizon-

tally), then the pathway likewise was not displayed. However, if the phantom aircraft position is

outside the FOV, the symbol is positioned on the edge of the HUD closest to the true position so that

the pilot will know the direction to the path even though he cannot see it. At this point the position-

ing of the flight-path vector/predictor symbol relative to the phantom aircraft will remain true, The

relative position between the two symbols is the error term for pilot tracking and is no longer situa-

tional data. This change in mode is indicated to the pilot by blinking the vector/predictor symbol at a

rate of once per second.

The primary guidance information is provided by the phantom aircraft symbol and the flight-path

vector/predictor symbol. The vertical flight-path vector/predictor "fvp is driven by



s 0)_I-I_ [K 8
'_Vp -- _¢v + _H s + 1 _ 8c c +

(7)

where

_'v

_H

S

K8 c

8c

e

vertical flight-path angle

aircraft heave time-constant

Laplace operator

collective input gain (0.095 rad/in)

collective stick input (inches)

pitch attitude (rad)

The horizontal flight-path vector/predictor ]tHp is driven by

YHp = YH +

Tp Ay/V

1 + 3/1 - (TpAy/V) 2

(8)

where

7H horizontal fight-path angle

% prediction time (3 sec)

my
lateral inertial acceleration

V helicopter's velocity

The vertical predictive term is compensated for the heave-time constant of the aircraft. Since the

simulated helicopter's flight-control system produces vertical velocity in response to collective input,

the collective feedback gives the pilot an immediate feedback of his control actions to the aircraft

vertical flight-path angle. Therefore, the pilot can position the flight-path symbol vertically without

waiting for the aircraft to respond. The horizontal prediction term integrates along path curvature to
determine where the aircraft will be 3 sec later based on the aircraft's current inertial acceleration

(ref. 14). Therefore, the pilot can position the flight-path vector/predictor on the phantom aircraft

with little difficulty.
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SIMULATION FACILITY AND TEST PROCEDURE

The piloted simulation was conducted on the Ames Research Center six-degree-of-freedom

Vertical Motion Simulator (VMS). The VMS provides extensive cockpit motion for use in studying

the handling qualities of, and the advanced guidance concepts for, existing and proposed aircraft

(ref. 15). The VMS and the operational limits of the motion system are shown in figure 5. The

cockpit visual scene with the HUD and head-down moving-map display is shown in figure 6. The

cockpit was configured with conventional cyclic, collective and pedal controls. The visual system, a

Singer Link digital image generator, consists of a four-window display of computer-generated

imagery (CGI). Figures 7(a)-7(c) show a planner view of the CGI data base used for the simulation

with three different waypoint sets. The f'trst waypoint set (fig. 7(a)) was used to test the terrain

following feature of the guidance algorithm; the second set (fig. 7(b)) was used to test the terrain

avoidance; and the third set (fig. 7(c)) was used to test an equal mixture.

The data base consists of a central area with pyramid-shaped hills (with altitudes up to 1,000 fl),

trees, and buildings. Leading into the central area are three sets of parallel, 3,000-ft-long, inverted-V-

shaped peaks (prism shaped). Some of these peaks have 200-ft-wide notches or valleys cut into

them. The hill sets were chosen to give the trajectory-generation algorithm a clear choice for the gen-

eration of the optimal trajectories and to provide a comparison with a previous simulation in which

the pilot task was primarily terrain-following (refs. 16 and 17). A digital terrain-map, representing an
advanced DMA format of the data base, was made with a 10-m resolution and with terrain altitude

quantized to 10 m, for use by the guidance algorithm. Additionally the data base was Se_ed with

trees and houses up to 60 ft high. These obstacles were not available to the Dynapath algorithm for

trajectory calculation.

The helicopter mathematical model used during the development and evaluation of the system

concept is detailed in reference 18. The model characteristics and dynamics are very similar to those

of a UH-60 flown at light weight. The pilots flew the aircraft using conventional collective, cyclic,

and pedal controls by using an attitude-rate and vertical-velocity-command flight-control system.

The model is based on a simple six-degree-of-freedom, nonlinear, stability-derivative, point-mass

model. The helicopter model also had a simulated autopilot with full trajectory-coupling and

airspeed-hold modes. These two modes were used primarily for pilot demonstrations and training.

Ten helicopter pilots representing NASA, the U.S. Army, and the U.S. Air Force participated in

the evaluations. A total of 302 simulation runs were conducted with an average run covering 8 to

12 n.mi. over extremely varying terrain. The test matrix is shown in table I.

The evaluations consisted of a baseline case (waypoint set 2, an airspeed of 60 knots, a ground

set-clearance of 100 ft, a maximum bank command of 17 °, no turbulence, and unlimited visibility)

and the eight variations shown in table 1. The variations included the other waypoint sets, varying

speeds (40 and 90 knots), a lower set-clearance (40 ft above ground level (AGL)), an increased
maximum bank command (30°), inclusion of moderate turbulence, and reduction of visibility to

0.25 mile. The pilot started each run with the trajectory guidance information displayed on the HUD

and with the helicopter trimmed at the correct altitude, heading, and airspeed for the commanded

trajectory.

10



VMS NOMINAL OPERATIONAL MOTION LIMITS

I

AXIS DISPL i VELOCITY

VERTICAL ±30 16

LATERAL ±20 8

LONGITUDINAL ±4 4

ROLL _+18 40

PITCH _+18 40

YAW +_24 46

ALL NUMBERS, UNITS fi, deg, sec

ACCEL

24

16

10

115

115

115

Figure 5. Vertical Motion Simulator.
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Figure 6. Cockpit visual scene.
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Table I Simulation test matrix

Configuration Waypoint set Airspeed, Set-clear, Maximum bank Turbulence
knots ft, AGL command, deg (moderate)

Visibility

Baseline 2 60 100 17 Off

1 1 60 100 17 Off
2 3 60 100 17 Off

3 2 40 100 17 Off

4 2 80 100 17 Off

5 2 60 40 17 Off

6 2 60 100 30 Off

7 2 60 100 17 On

8 2 60 100 17 Off

Unlimited

Unlimited
Unlimited

Unlimited

Unlimited

Unlimited

Unlimited

Unlimited

1/4 mi
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The pilot was given two kinds of tasks. For the 100-ft AGL set-clearances (table 1), the task was

to precisely follow the flight-path vector/predictor and phantom aircraft guidance to determine flight
technical error. For the 40-ft AGL set-clearance, the pilot was asked to use the guidance for general

navigation but to override the command as required for obstacle avoidance. This is a fundamentally

different task.

RESULTS AND DISCUSSION

For all the test combinations listed in table 1 the pilots were able to maintain very precise guid-

ance tracking using the flight-path vector/predictor and phantom aircraft display. Lateral and vertical

pilot guidance-tracking performance plots are shown in figure 8(a)-8(d) for the baseline case. The

figures display tracking performance as a function of distance traveled along waypoint set 2. Fig-

ure 8(a) is a composite of lateral guidance tracking of all the simulated runs for the test condition.

Figure 8(b) shows the mean and 1-_ (standard deviation) lateral tracking error also as a function of

distance traveled. In figures 8(c) and 8(d) the composite and statistical vertical tracking performance

capability is shown as a function of distance traveled. These plots are shown as representative of the

pilot tracking performance for the test configurations.

The lateral and vertical pilot guidance tracking errors for all configurations are summarized in

figure 9. The figure shows 1-_ pilot tracking performance as a function of each configuration tested.

As evident, with the exception of the 40-knot case, the 30 ° maximum commanded bank-angle case,

and the 40-ft AGL set-clearance case, the vertical and lateral tracking performance was under 6 ft.

There is some degradation, 3 ft to 6 ft, in lateral performance as the guidance shifted from TF to TA

to TF/TA; this can be attributed to the increased lateral maneuvering. The configuration for envi-

ronmental effects, for example, turbulence and limited visibility, showed results similar to the

baseline configuration and represented no significant piloting difficulties.

In the slow-speed and maximum bank command of 30 ° configurations, the pilots seemed to have

greater difficulty tracking the guidance. This is attributed to the fact that in both these cases the guid-

ance generates lateral maneuvers by using increased path curvature, as can be seen from equation 1.

Additionally, in the slow-speed case the helicopter is just starting transitional lift, thus making its

basic handling qualities worse.

As discussed earlier, the pilot's task when flying the low set-clearance altitude was somewhat

different from the other cases. For the low set-clearance altitude (40 ft AGL), the pilot was flying at

the resolution accuracy of the digital-terrain data base and at the altitude of trees and buildings

within the data base that are not included in the guidance algorithm. For this reason the pilots were

instructed to only use the guidance as an aid and to manually avoid obstacles and terrain that were in

the commanded trajectory. All the pilots successfully avoided the obstacles within the data base. It is

interesting to note that the pilots usually chose lateral maneuvering to avoid the obstacles. This is

evident by comparing the lateral deviation from the commanded path (31 ft, 1-(_) with the lateral

tracking error measured in the baseline case (8 ft, 1-_). This is due to the pilot initiating maneuvers

around obstacles and then tracking back to the commanded path. The vertical tracking performance

15
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(10 ft, 1-o) is very similar to the baseline configuration (8 ft 1-o), thus implying that lateral maneu-

vering was the first choice among the pilots for manual obstacle avoidance.

In simulation debriefings, the pilots indicated that the system was easy to fly, predictable, and

demonstrated an ability to provide a safe flyable trajectory at low altitudes. A major operational

attribute of the display presentation, as identified by the pilots, is the ease with which they can depart

from and reacquire the commanded path. This feature was viewed as being particularly useful in

intermittently changing visibility conditions where the pilot may choose to leave the commanded

trajectory for improved concealment when visibility is good but wants to reacquire the trajectory as

visibility degrades. They also commented upon the ease with which they could effectively use the

guidance for general navigation information while they were manually avoiding obstacles for flight

at very low altitudes.

Based on pilot acceptance of the concept, a joint NASA/Army program has been initiated to test

the concept in flight. Ames Research Center is working with the U.S. Army Avionics Research and

Development Activity at Ft. Monmouth, to install the system in the UH-60 STAR (Systems Testbed

18



for Avionics Research)helicopter.Theflight testwill useaHoneywellIHADSS helmet-mounted
displayandhead-trackerinsteadof theHUD. This integrationis proceedingandis scheduledfor
flight testin 1992.

CONCLUSIONS

A low-level, maneuveringpenetrationguidancealgorithmfor helicopteroperationshasbeen
developedandevaluatedin afull-motion simulator.Theevaluationpilots wereableto manually
tracktheHUD guidancethroughvariouscombinationsof terrain,speeds,andweatherthatwere
representativeof systemuse.Theguidanceis easytofollow withoutdetractingfrom thepilot's
awarenessof theoutsideworld. Thepilot is ableto combinetheguidancewith hisown sightingsto
optimizethemissionsuccessin varyingweather/threatconditions.Thecomputer-aidingconcepthas
maturedasa singlesystemdevelopmentthroughtheextensiveuseof pilotedsimulation.Theinte-
grationof theconceptinto flight is thenext logical step.Plansfor thisprojectarecurrentlyprogress-
ing throughajoint NASA/Army programon theUH-60A STAR helicopter.
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